J. Phys.: Condens. Matter 5 (1993) 7771-7784. Printed in the UK

Computation of parametric x-ray production by relativistic
particles in crystals under multiple Bragg diffraction

I Ya Dubovskaya, 3 A Stepanov, A Ya Silenko and A P Ulyanenkoff
Institute for Nuclear Problems, 11 Bobruiskaya Street, 220050 Minsk, Republic of Belarus

Received 20 April 1993

Abstract. An algorithm for computing spectral-angular and angular distributions of parametric
x-tay radiation (PXR) produced by ultrarelativistic particles in crysials under multiple Bragg
diffraction is developed. The algorithm is based on the methods applied in the dynamical theory
of x-ray mulitiple duffraction. The angular distribution of three-wave pxrR angular distribution
into the simulated forbidden reflex {222) in the Ge crystal is computed. It is shown that using
multiple PXR generation it is possible to generate x-ray beams with double angular collimation
= 1 angular s? and spectral width =~ 1073

1. Introduction

Parametric (quasi-Cherenkov) x-ray radiation (PXR) is the radiation produced by a reiativistic
particle moving with a constant velocity through a crystal target. One of the main
peculiarities of PXR is that the x-rays can be observed not only at a small angle along
the particle movement but also at a large angle (the Bragg angle). The physical principle of
PXR production is similar to that of Cherenkov emission in the optical band but it strongly
requires periodic (crystalline) media. The fact is that the refractive index of x-rays in
uniform media is known to be smaller than unity (the phase speed of x-rays is more than
the light speed constant) and therefore x-ray Cherenkov radiation is impossible. However,
under the Bragg condition for x-rays emitted in a crystal, the situation can change. Due
to dynamical diffraction the refractive index of x-rays can stand out above unity and, as a
result, the Cherenkov condition can be fulfilled. This mechanism of PXR production was
first predicted in [1] and experimentally confirmed in [2, 3].

From the viewpoint of applied physics PXR can be considered as a tunable frequency
source of quasi-monochromatic x-rays [4]. In this connection the production of PXR under
multiple diffraction is of great interest as the multiwave Bragg geometry is assumed to
provide an enhancement of PXR spectral-angular density [5]. Moreover, the measurements
of PXR angular distributions under four- and eight-wave diffraction conditions were carried
out in [7, 8]. In these experiments intensive narrow peaks resulting, as the authors supposed,
from the multiwave diffraction, were observed.

Up to now the theoretical interpretation of PXR experiments was restricted to the case
of two-wave diffraction when simple analytical expressions can be derived [8,9]. The
multiwave generation of PXR can only be calculated uwsing compuiers and has not been
carmried out because the respective algorithm was not developed. One of the solutions of
this problem was proposed in {10, 11] on the basis of matrix exponentials. However, we
think that this approach is convenient only for analytical analysis of the main features of
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PXR and is not applicable to computations because of the need to compute exponents of
complex matrices.

In this paper the algorithm of computer simulation of multiwave PXR spectral-angular
and angular distributions is developed on the basis of methods applied in the dynamical
theory of x-ray multiple diffraction [12, 13]. The resuit is illustrated with the computation
of three-wave PXR angular distribution in the direction of the simulated forbidden reflex
(222) in the Ge crystal.

As we will show below the algorithm is suitable for an arbitrary multiwave PXR
production. Therefore, its application to simulation of experiments [6,7] requires only
an account of the specific experimental geometry and spreadings. A detailed analysis of
these experiments will be made in a separate publication.

2, Computation of PXR spectral-angular density

Let a relativistic charged particle (for definiteness, an electron) be incident on a crystal at
such an angle that pseudophotons of particle electromagnetic field with a frequency « and
wave vectors directed along the particle velocity v satisfy the Bragg diffraction condition for
several crystallographic planes with reciprocal lattice vectors R, g, ... (see figure I{@)). To
find the x-ray wave field produced by the particie we should determine the Green-function
of the problem and calculate its convolution with a current density produced by the moving
particle. As shown in [1], the Green function can be expanded into a series of solutions of
the homogeneous x-ray diffraction problem jn the crystal. The substitution of this expansion
into the convolution integral allows us to obtain the following expression for a number of
PXR quanta emitted by a particle, for example, in a reflex h (we assume i =c = 1}

fe 2
f dt[v - By (r, 0)] explior)| dwd (1)
0

o = (2

where the integration is carried out over time f; = L/{(v - n) of particle travel through
the crystal target, L is the target length, n is the unit vector normal to the crystal surface,
r = vt is the radius vector of the particle coordinate, ky = wwv+ h is the wave vector of a
photon diffracted by crystallographic planes of h, @ =| k |, and dw and dS2 are the spectral
and angular intervals where x-rays are detected. The magnitude of £, = ANy, /dw dR2
is the density of a spectral-angular distribution. The field amplitude E;c"' (r, w) is the kth
component of the Green-function expansion in the solutions of the homogeneous problem.
For a crystal with a finite size this field has an asymptotic form of a sum of a plane wave
and incoming spherical waves. Previously, it was shown (see, for example, [1]) that the
solutions of B, and E{*’ are connected by the following relationship:

E::—)‘ — E(-'H (2)

where E;*’ is the solution of the homogeneous diffraction problem describing the scattering
of a plane wave by a crystal.

So, the calculation of the Efc;"’ field can be reduced to the problem of multipie diffraction
of a plane x-ray wave being incident on a crystal from the point where the detector, which
records PXR photons with the wave vector ky, is placed (see figure 1(h)).
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Figure 1. An illustration of the transition from the geometry of pXr emission () to the geometry
of Bragg diffraction of an external wave propagating in the reversed direction (&),

Let us carry out the reversion of wave vectors in accordance with (2) and use the
algorithm of the multiple Bragg diffraction problem, presented in [12] and [13]. The
reversed wave vectors k,, are introduced as kj, = —k, (m =0, h, g, ...} and k; is
asswmed to be the wave vector of the incident wave., Then the reciprocal lattice vectors m/
contained in the diffraction equation for the k; wave are connected with the initial vectors
m by the relationship '’ = b — m. Really,

kly=~ky=—(ko+m)=—ky—h+m)=k, +(h—-m} =k, +m'.

Also, let 7’ be the crystal surface normal introduced at the surface of kj, incidence in the
way adopted in the diffraction problem. Obviously, 7' = —n for the Laue case and n’ = n
for the Bragg one, i.e. ' = —(¥/ | ¥ )1t (p are the cosines of the angles between the
x-ray wave vectors and n). As will be shown below, only two waves determine the PXR
production: one that penetrates along the particle movement direction ky (0 = k) and one
that is “incident’ from the registration point & (h’ = 0). That is why it is convenient to
denote the corresponding vectors in the following way: ky = k;, 0" = 0 and k] = Ky,
R" = h; the primes will be omitted below.

Under the multiple Bragg diffraction the z-ray wave field E‘_?(r, w) can be represented
inside a crystal as a sum of transverse Bloch waves of o and & polarizations, which travel
in all diffraction directions k, and correspond to 2N dispersion branches {13] (N is the
order of multiple diffraction):

EF(r.o)= ) > &, D) 3)
2N N - s
Di(ry = ZA‘J’Df,f“ expli[kpn — w(e” — ap)n]r} (4)

J=l

where ej, are the unit vectors of ¢ and » polarizations (e, L k,;, €], 1 kp, €], L el). One
has some freedom in choosing the directions of these vectors. We use the way adopted in
[12] and {i3], which is convenient for the case when all the reciprocal lattice vectors
h, g, ... are in the same plane. This is:

€n =[S X Rol/ | [8m % hy] | ey = [y, X 8]
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where hy = [h x g] is the normal to the plane and s, = k,/w are the unit vectors
along k-

Parameters A/} are the coefficients of dispersion branches excitation which can be
determined from the boundary conditions (see below); "0} are the field amplitudes for

each branch. The parameters
tm = [(ko + m)? ~ ©*]/20% m=0h,g, ... ©)

determine the deviation of an incident wave from the exact Bragg condition for the respective
reflex. It should be noted that our definition of &, differs by 1/2y,, from that commonly
used (¥ = (85 - m)). This definition was adopied to make the formulae more compact.

The parameters ¢'/) determine x-ray refraction at the crystal boundary as a function of
s

B = by — oY — ay)n. (6

The above relation results from the conservation of x-ray frequency under Bragg diffraction,
the preservation of ky, tangential components at surface refraction and the fuifillment of the

condition k5’ = ki’ + m for the Bloch waves in the crystal.

The wave amplitudes D5’ and the parameters e/ are sought as eigenvectors and

eigenvalues of the dynamical diffraction equations in the crystal, which have the form
[12.13]t:

3 Y eE i =D, )

s'=am '

Here

G:f:,.' = amafsns;n* - (I/ZYm){Xmm'(efn . e:;*) + ixgm‘[(sm * 8me)(E, - ef;,')
+ (e 8w (om - €3]} ®)

is the 2N x 2N scattering matrix, Ypn and Xn?m’ are the dipole and quadrupole components
of the expansion of the crystal dielectric susceptibility x(r, @) in a Fourier series over the
reciprocal lattice vectors. To compute X, and xfm, for an arbitrary x-ray frequency we
used the program described in [14].

The set {7) is simply solved with a computer because the methods of numerical analysis
of the eigenproblem are well developed, including the case of an arbitrary complex matrix,
We used the reliable routine from [15] which was based on the reduction of the matrix to
upper Hessenberg form and the LR algorithm.

To find the coefficients A" one has to employ the boundary conditions for the wave
amplitudes. For the plate-shaped crystal the conditions are

Ly

Dy, (0) = 3mol 8% cos(e) + 8™ sinp)] 9

T Equations (7} are not valid one or more of the x-ray beams makes a grazing angle with the surface less than the
critical angle of total external reflection (= 0.1-17), The two-beam grazing case has been considered in [17] and
we plan 10 analyse a multiple-beam one in our next work.
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for the Laue-case waves (y,, > 0), and

18]

D, (L) = (Sa)

for the Bragg-case waves (y, < 0).
Here 6, is the Kroneker symbol; ¢ designates the angular deviation of the ‘incident’
polarization from eg. Equations (9) with regard to (4) may be rewritten in the matrix form

N
2 Cal AP = 8nol 87 cos(g) + 6 sin(e)] (10)
i=1

where the following matrix has been introduced:

(.

DY) exp(—iwe' L) for y, <0

The set of linear equations (10) is solved with respect to A by the Gaussian method
using a computer. For this purpose an appropriate routine from [15] was applied.
Some remarks are in order here.

(1) As the particle produces x-ray photons with all polarizations simultaneously, one
hag to summarize the intensities over polarizations. The procedure includes the solution of
{10) for the two right-hand terms; one is for o-polarized ‘incident’ rays (g = 0) and the
other for r-polarized rays (¢ = 90°). Then the obtained coefficients A and A are used
separately for computation of PXR intensities and the results are combined.

(2) If the crystal is thick (compared with x-ray absorption) the solutions of (7) with
Im €'9) > 0 should not be taken into consideration as they describe the waves reflected
from the far boundary of the crystal plate. In this case the boundary conditions (9a) are not
accounted for either and the total number of equations in (10) is reduced. The reader can
find a detailed description of this reduction in [13].

Incidentally, we have found the wave fields inside the crystal as the solutions of (7) and
(10). Substituting them in (I) and taking into account (2)~{4) we obtain

Pro = (5 ) YEY Z(v €,)AU Di)

p=oo m 5=0.7 j=
173

% fdtexp[l(k;nr +wt) — iwEe —ay)(n - 1)) ’ (12}
0

where the sum over p denotes the summation over ‘incident-wave’ polarizations.

Let us express the coordinate vector in (12) in terms of time. In this case we have
to account for the fact that in the Bragg case the coordinate origins of the diffraction and
emission problems coincide and in the Laue case are misplaced by vt r = v 4 wvig.
Therefore

() =

[v(r ~t) for emission in the Laue-case reflex (y, > 0) (13)

for emission in the Bragg-case reflex (y, < 0).
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‘We should also note that the term m = b in the summation over m is much greater than
the others because the index of its exponent is smali and can be equal to zero (neglecting
absorption). Thereby, this termn can give rise to strong Cherenkov emission. Neglecting the
other terms corresponding to waves propagating under large angles to v and carrying out

the integration in (12) taking account of the relation r, = L/ | ;' | and equation (13) we
obtain
e 2 2 . N . , z
Pao=(32) 2|2 Y (v edn Dy [1 — exp(—i@ " L/y)]/ 0 (14)
=07 |S=a,T j=]

where the following designation is used:
0" = (ky - v+ @) + ol — ap). (15)

For a thick crystal equation (14) may be simplified;

Piw = ( ) 3 l 3 Z(U e ),LmDsm/Qm (16)

p=a.m s=a,x j=l

Equations (14)}-(16) provide the computation of the spectral-angular PXR distribution
for an arbitrary number of Bragg reflexes involved, i.e. they solve the problem.

Concluding, the proposed simulation algorithm of multiwave PXR production consists
of the following phases:

(1) evaluation of v and all k,, on the basis of the given reciprocal lattice vectors m
and the frequency w of PXR production;

(2} selection of the reflex h for which PXR production will be computed;

(3) evaluation of the vectors k., i), and e} of the reversed diffraction problem and
transition to the diffraction problem notations;

(4) computation of the crystal suscepnbllitics Xmm and xmm,,

(5) filling up the scattering matrix Gmm, using equations (8) for given ap;

(6) solution of eigenproblem (7) and evaluation of €' and DI,

(7) filling up the boundary condition matrix €5, g N accordance with (11);

(8) solution of the boundary problem (10) and evaluation of 2" and A for the two
‘incident’ polarizations;

(9) evaluation of Q' using equation (15); and

(10} computation of PXR spectral-angular density by (14} or (16).

3. Construction of spectral-angular PXR distributions

If we intend to study P, depending on variations of & and the diffraction angles we need
to:

(i) determine how ko, ky and v depend on the angles and 8w/ ew;
(ii) use the dependences in the evaluation of ¢, QY and (v - e}); and
(iii) substitute the obtained a,, and Q' into (8) and (14).
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Starting the analysis one reveals that, in two-wave PXR production, an arbitrary direction
of particle motion through a crystal is a Bragg one. In fact, as the particle simultaneously
emits x-rays with all frequencies, one can always match the Bragg condition (o = 0) with
some frequency. The situation is quite analogous to that of irradiation of the crystal by a
collimated ‘white’ x-ray beam. From the Bragg condition for an x-ray quantum emitted
along » (k§ = wp®) one can find (see (16)) that

(wp® + h)? — wid® =0 (17)
and therefore
wp = —h%j2(0 - h) (18)

where © = v/v = v(1 + £¥™?) is a unit vector along v; y = E/m is the gamma factor of
the relativistic particle with energy E.

In the multiple-diffraction case the situation is not so arbitrary because the vector
wgt must fit at least two conditions like (17). Therefore, it must have an origin on
the normal hy, to the plane built by vectors b, g, ... (see figure 2). Tilts of ¥ in the
plane defined by v and h, cause the movement of the cgigin along h, and thereby the
variation of wg (the variation of the Ewald sphere radius). The conditions of multiple Bragg
diffraction are preserved in this case. Otherwise, the tilts in the perpendicular direction
(along g, = [vs x hy)/ | [vs x Ryl {) cannot be compensated and give rise to deviations
from the exact multiple Bragg diffraction conditionf. Therefore, the vector v may be
represented in the following form:

v=uvg(l - $62) +6,q, = 0o — Ba(r 2+ 261) + Q. 19)

where 6, is the small angle between particle velocity and vg. The latter is supposed to fit
the multiple Bragg condition

(wgﬁg—!—m)z—w%:O m=h,g,.... (20)
To determine the variations of ky one has to recollect that it was introduced as the
‘incident’ wave vector of the diffraction problem, being antiparallel to the momentum of

x-ray photons generated in the direction of PXR registration. Therefore, this wave vector
may be represented in the form

ko = K (1 = 167 - 163) + kP800 + wn (0 + 622)
=ky + kP [s0/w — 1(67 +62)] + wQ (21)

where

k¥ = ~(wgip + R) (22)

i Note that if vectors k. g. 2, ... do not lie in 2 common plane (as in [6] and [7]) then wa® must have its origin
at the crossing point of severai hi;. In this case the direction of particle incidence tnto the crystal and the Bragg
frequency are fixed.
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Figure 2. Geometry of non-coplanar three-wave diffraction of an x-ray photon emitted by a
particle with velocity ».

is the wave vector matching the exact Bragg condition of the diffraction problem. In fact,
with regard to (20) and the connection ™’ = h — m one can find that

(k(B! +m )2 lB) =0 m’ = h’, g,, PO (23)

The angles 8, and &, introduced in (21) determine the angular deviations of kg from the
exact Bragg condition. The term in (21) containing dw/w characterizes the variation of
length of ko due to variations of x-ray frequency. The vectors g and g are the unit
vectors in the directions of 8, and 6, taking ¢ L k', g, L k', 1 L ¢,. The choice of
the directions is usually given by directions in which the experimental angles arc measured.
More frequently used variants are

(@ q | e Q|| eg
(b) @ = [k x kT ~ [ x kP'1.

We use (a).

To obtain the equation for ky one can make use of the following relation which is easy
derived from (6):

kh = kn +h - WRULTL. (24)

Substituting (21) and (22) into (24) we obtain

ky = —tpwp + kBB’[Sw/w - %(912 + 922) + wglQ — wpayn. (25)
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Finally, substituting (19}, (21} and (25} into (5) and (15}, we arrive at
an = 0327 [ R - ) (8ev/e0 — 167 +63) + an(@ - )} (26)

0¥ = {4 (y 2+ 67 +6F 46 + 1(e — o) - Qu[may + (R/ws)e/e — Q]}.27)

We would like to pay attention to a weak (square-law) dependence of @'/ on angle @,
i.e. deviation of a relativistic particle incidence direction from the multiwave condition. This
provides good possibilities of observing multiwave PXR production in experiments because
the averaging over {, due to a particle multiple scattering by a crystal will not have a
strong effect,

Let us average equation (27) over the spread of the angle Q. If the primary deviation of
the particle velocity from the exact Bragg condition is not too large then the second bracket
in (27) can be dropped and we can replace 62 by §2+62 in the first bracket (see [1}). Here 62
is the mean square angle of multiple scaitering given by the formula 93 = (B,/E)*(L/Lg);
E; =21 MeV; Lg is the radiation length for the crystal. Thus, carrying out the averaging
we obtain

0 = wpy(®% + ¢ — ;) (28)

where &2 = (y~2+674-62+82467)/2y,. Finally, applying (19) and (25) and the definitions
of €;, and g, one may obtain the expression for (v - ;) in the linear approximation with
respect to angles:

(v-e)) = (e . Asy) — 6,6 (29

where 3*7 is the Kroneker symbol; Asy, = (k;, — k;,B')/wg =+ kém&m/mz — Q1.
Equations (26)—(29) give the possibility of investigating the dependences of the spectral-
angular density of PXR on 6y, » and de/ev. Examples will be presented in section 6.

4. Computation of angular distributions

To compute the PXR angular distributions one has to integrate (14} and (16) over all possible
deviations of PXR frequencies from the Bragg one wg {:

W= (2) T [|13 S0 eppnerorwfa(). o

p=o.x s=o,0 j=i

In principle, the integration of (16) can be carried out numerically. However, the
conventional algorithms will not work because the integrand function consists of a set of
very narrow parametric resonance peaks, satisfying the condition

Re QY = 0. 31

1 It is also necessary to summarize over high-order Bragg frequencies 2ewg, 3wg .. .. because the waves with
vectors 2k, 3k, ... also undergo muitipie diffraction on reciprocal lattice vectors 2m, 3m, .. .. We leave out this
summation in assumption that the x-ray detector allows us to cut off the high-order frequencies.
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The peak width with respect to dw/e is of the order of Im QY = Im &'/ = Im y;, while
the integration band is == 10 [ xy |, i.e. 10P-10* times greater. Therefore, we have to find
the frequency coordinates of PXR resonance peaks. From (31) and (28) we obtain

Ree = ay — $2. (32)
Substituting (32) in (7) we arrive at the equation set for the resonance frequencies:

Re(G)D = Re(e) D = (&, — ) D. (33)
The unknown value dw/w is presented in these equations through e,,, which, in accordance
with (26), are linear in Sw/w. A weak dependence xnm (@) can be neglected, In principle,
the solution of (33) is reduced to searching for the roots of a polynomial of rank 2N -2,
where N is the diffraction order. It is, however, known that the numerical root search of

high-order polynomials is a very unstable procedure. Therefore, it is important to find a

more effective algorithm. Equation (33) with regard to (8} and (26} can be transformed to
the following form:

A.-D=(@w/w)B-D (34)

where A and B are square matrices:

A% = (o — of” + D)8 — X (€], + €Y/ 2¥m (35)

B = (ff — )85, (36)
o _ ro—=R w =2, = k[B)

oy, = 0Un j&u/co:ﬂ Xmmt = € Xmm S =wg Ve (kg -m).

Eguation (34) has the form of the generalized eigenvalue problem and we can apply
for its numerical solution the algorithin described in [16] and realized in [15]. As the
maximum power of dw/w in this equation is 2N — 2, we shall obtain 2NV — 2 roots and the
same number of PXR peaks. However, some roots can be complex |, We take these roots
into consideration too if their imaginary part is of the same order or less than the real one.
In the case of complex roots the integration is carried out round Re(dw/w).

The numerical integration limits are chosen in accordance with

(Sw/m)g;R —c¢Imxp < dwjw < (&o/w)g;m +cIm xg
whera (Sw/w)g,‘m is the ith peak coordinate; ¢ >~ 10'-10? is the input data parameter. The
intervals are reduced in the case of crossing limits from neighbouring peaks.

Thus, in this section the method of computing PXR angular distributions in the case
of multiple-diffraction PXR production was developed. This makes the simulation of
experiments possible in principle. However, the time for the computation is very long:
~ 10 values per minute for a pC 486 (50 MHz) when computing the three-wave generation,
while the experiment simulation requires a distribution =~ 100 x 100 to be computed and
the performance drops as the third power of the diffraction order. So, computation rate
enhancement is a very significant problem.

T Complex roots will be complex conjugated in pairs because the equation has real coefficients,
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5. Methods to increase the computation rate

Because of the publication space limits let us consider only the main notions on the time
reduction of the PXR angular distribution computation, without details of their realization.

5.1. Rejection af weak peaks

There are 2N — 2 PXR peaks for each angular point (6, 6,). However, the only intense
peaks are those for which the parametric resonance condition coincides with the diffraction
maximum, i.e. the peaks for which | @, |{< 1. The computation time could be reduced by
several times if we analyse the maxima of the PXR spectral-angular density in the centres
of peaks and reject the weak peaks.

3.2. Reduction of the dimension of the diffraction matrix

Let us assume that an intense peak of the PXR spectral-anpular distribution has been found.
It is reasonabie to analyse the value of reflex parameters «,, and exclude lines and columns
corresponding to refiexes with | & 3| xm | in the diffraction matrix, i.e. to decrease the
order of diffraction before integrating over dw/w in the neighbourhood of this peak. This
procedure ensures a further computation-time reduction by four to eight times since seeking
the eigenvalues (7) and solving the boundary problem (10) are accelerated.

5.3. Analytic integration of the PXR peaks

The analytic integration procedure has been used earlier in [8] and [9] for the two-wave
PXR production. The notion is based on the fact that the width of a PXR peak for frequency
(= Im | x {) is 10'-10% times less than the width of a Bragg peak (| x; [). Therefore,
the parameters A5 (w) and D5/’ (w) can be considered as constant within 3 peak and taken
outside the integral sign in (30), and the change of ¢'/)(w) can be allowed for in linear
approximation. After that the integral (30) is easily calculated analytically if the derivative
de'”’ /dw in the centre of the peak is known.

For the multiwave case the analytic integration is also possible but complicated by the
three following circumstances.

(1) Several peaks exist and the contributions of intersection domains into the total
integral should be accounted for. In particular, the structure of the scattering matrix (8)
shows that if | oy [>] xx |, then the roots € and ¢™ are close (¢ = o) and, therefore, the
peaks of o and 7 polarizations are always close.

(2) The derivative de*/’/dw can only be computed numerically, and since every point
has 2N roots (the function €'/(w) is many valued), careful precautions should be taken in
order to ensure that the roots are not confused at the computation of the derivative.

(3) A multiwave Borrmann effect may appear in a narrow domain comparable with
dw/w =~ Im | xx |. In this case the solutions of the diffraction problem change in the
same dew/w scale as the PXR peak. To exclude errors in this domain, one should refrain
from analytical integration if several parameters o, simultaneously satisfy the condition
O <] X |

Qur experience shows that analytic integration is possible in 30-90% of cases and that
it provides an advantage in the computation rate by 2-10 times.

On the whole, the use of the described and some other methods allows us to reduce the
duration of computation by 30-40 times.
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6. Computation of the PXR generation into the forbidden reflex simulated by three-
wave diffraction

The algorithm developed has been used for simulation of the PXR generation with wavelength
A = 1.54 A into the forbidden reflex (222) in the Ge crystal (rzz2 = 0). The reflex (222)
is indirectly excited (simulated) by the three-wave Bragg diffraction on the planes (311)
and (133) (the Renninger effect). The computation parameters are as follows: the crystal
surface coincides with the plane (011); the crystal plate thickness L = 250 um; the electron
with the energy £ = 1.2 GeV is incident on the surface at an angle of 52.9% the radiation
length of the electron multiple scattering is L = 15x 10* um. As all the diffraction planes
are perpendicular to the surface, the symmetrical Laue case of diffraction occurs.

The intensity of radiation into the forbidden reflex is high only in the multiwave domain.
Therefore, the multiwave effects are most pronounced in this case.

{a}

s04e” 14

84 {mnt
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L
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-3 e}
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Intensity larbitrary units)

80 0 80 B T T
8, tman} g, s

Figure 3. Two-dimensional angular distribution of three-wave PXR in the case of the simulated
forbidden Bragg reflex in Ge (a), projection of this distribution into the reference plane 8; ()
and the section along & with 64 = 10 (¢).
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The general view of the PXR angular distribution is given in figure 3(¢). The angular
distribution has the form of a slightly curved ‘prolongated touch’ with divergence parameters
~ 5 x 5000 angular s, This distribution has a qualitative difference from the two-wave
distribation, which is rather wide in both directions.

Let us make a more detailed comparison (see, e.g., [8]). Figures 3(b) and (c) show
the projection of the angular distribution into the reference plane ¢; and the section along
& with 6; = 10", If the projection in figure 3(b) is qualitatively similar to the two-wave
case, the section in figure 3(c) shows the basic difference: its width is ~ 10° times less
than that along 6, while the width of two-wave PXR peaks is of the same order in both
directions. The difference of the angular distribution divergence relative to the angles 6,
and 6, is attributed to the fact that the angle 8 is varied in the surface plane and 6, in the
plane normal to the surface. Therefore, scanning in &, causes the changes in all o, while
the contribution of the #; variations to o, could be compensated by the change in dw/w.

Figure 3(c) clearly shows the fine structure of the PXR angular distribution. There are
four'peaks (2 — 2 in a general case); however, one of them is considerably more intense
than the others. The half-width of this peak is less than 5 angular s.

It is essential that the spectral-angular distribution has a divergence = 5 % 5 angular
8, L.e. it is collimated in the two planes. Thus, the considered three-wave PXR, concerning
its spectral and angular characteristics, is similar to x-ray tube radiation collimated by two
mutually perpendicular monochromator crystals. Hence, the multiwave PXR could be used
as a source for investigations of x-ray multiple diffraction, smali-angie scattering, etc. The
wavelength of this source could be easily tuned by changing the angle of electron incidence
on the crystal surface.

7. Conclusions

The algorithm and the program for the computation of the PXR spectral-angular and
angular distributions produced by ultrarelativistic pasticles in crystals under multiple Bragg
diffraction have been developed.

1t is shown that using the multiple PXR generation it is possible to generate x-ray beams
with double angular coilimation = 1 angular s? and spectral width s /w =~ 1073,
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