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Abstract. An approach is described to compute extremely asymmetric x-ray
diffraction in multilayers and superlattices taking account of the normal lattice
strain. This method is based on the dynamical theory of x-ray diffraction and on
a matrix form of boundary conditions, thus providing a simple numerical solution
to the problem. The developed approach can be used to interpret extremely
asymmetric x-ray diffraction measurements of lattice strains in semiconductor

multilayers and in other surface structures.

1. Introduction

Dynamical x-ray diffraction is a well known technique
for studying tiny distortions and lattice strains in perfect
crystals. However, this method is only applicable to
those cases in which the strained layers are thicker
than, or of the same order as, the x-ray extinction
length, which is usually 1-10 um [1,2]. In recent
years this scale of depth has become too crude for many
applications, especially for modern microelectronics,
with strained layers being often as thin as 107>~107% um.

The extinction length can be decisively shortened if
x-ray diffraction is combined with grazing incidence or
grazing exit of x-rays with respect to the crystal surface
[3]. In this case the extinction length is reduced to 10—3-
102 um due to evanescent waves caused by the total
external reflection effect. Maximum sensitivity to thin
layers is attained with both grazing incidence and exit
[4-6]. This case is usually referred to as the grazing-
incidence diffraction scheme (GID). However, GID does
not provide any information about lattice spacing along
the crystal surface normal because the diffraction vector
runs parallel to the surface. Therefore, it is only possible
to measure changes in lateral lattice spacing. However,
there is no change in lateral lattice spacing in thin layers,
unless there are misfit dislocations.

Thus, the extremely asymmetric x-ray diffraction
(XEAD) technique, with either grazing incidence or
grazing exit, is likely to elicit great interest in application
since it combines sensitivity to thin surface layers with
the opportunity to measure normal lattice strain.

The theory of x-ray diffraction under total external
reflection conditions for perfect (unstrained) crystals has
been put forward in many papers [4,6-10]. However, for
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layers with variable lattice spacing the situation is less
clear since the Takagi—Taupin equations are inapplicable.
The reason is that x-ray wavefield amplitudes are
inclined to vary at a depth scale that is comparable to
interatomic distances and, hence, the second derivatives
of wavefield amplitudes in the Maxwell equations cannot
be disregarded. Moreover, specular reflection and
refraction effects should be included in the boundary
conditions by analogy with the perfect crystal case. The
matrix extension of the Takagi-Taupin equations, as
suggested in [11, 11a] is generally applicable, but lattice
strain has not been included in this model. Additionally,
a numerical solution to matrix Takagi-Taupin equations
is highly complicated and may turn out to be unstable for
the sharp interfaces in multilayers due to the assumption
that wavefunctions and their derivatives are smooth.

In the present paper we put forward a simple
and physically persuasive approach to computing GID
and XEAD in multilayers under normal strain. The
algorithm suggested is based on the extended dynamical
diffraction theory, taking due consideration of the
specular reflection and refraction effects. It is held to be
an extension of the matrix solution to GID in multilayers,
as recently published in [12]. The approach used in
[12] was essentially the same, but strain effects were not
taken into account.

Section 2 deals with the derivation of the equations
for the general case, including both GID and XEAD.
Section 3 discusses simplification of the general
formulae for XEAD, with either grazing incidence or
grazing exit. Section 4 supplements the algorithm with
formulae simulating various experimental scans. This
section was included since modelling of non-coplanar
XEAD geometry poses a special problem that is not
trivial. Finally, section 5 provides numerical examples
and discusses the advantages of XEAD in studying lattice
strains in thin layers.
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Figure 1. Schematic view of extremely asymmetric x-ray
diffraction. For explanations see text.

2. Derivation of basic equations

Let us consider GID or XEAD in a multilayered structure
that is composed of N crystalline layers with matched
lateral spacing: ki =hi=...=hy, h; #hl #... (h'
is the reciprocal lattice vector of Bragg diffraction in
the ith layer, h;, and h, denote lateral and normal
components respectively). Those structures that contain
additional amorphous layers are not considered here
for reasons of simplicity. Nevertheless, the amorphous
layers can be readily included in the model by analogy
with [12].

Let ko be the wavevector of the incident wave and
ky, that of the diffracted wave in vacuum above the
crystal surface (figure 1). The salient point is that despite
different lattice spacings in layers only one diffracted
wave leaves the crystal. Since ky = koj + b applies
to all layers, the normal components of the diffracted
waves in vacuum connected with different layers are
proven to be the same due to retention of the x-ray
wavelength. Thus, all waves leave the crystal at the same
angle @, = arcsin(kn;/ko) = arcsin[ (k2 — kZ,)'/*/ko)].

This effect noted earlier in the kinematical analysis
of problem [13] will not be sustained if there is a lateral
mismatch in the lattice spacings [14].

Thus, in a general case, the wavefield in vacuum for
every incident x-ray polarization consists of three waves
(incident, specularly reflected and diffracted waves):

E,(r) = Eoexp(ikoyoz) exp(ikoy )
+ E;exp(—ikoyoz) exp(ikoy - Fy)
+ Ey exp(—ikomnz) explitko + k) - ry] (D

Here yon = kon *+ n/ko = sin Pop; the vector n is the
unit vector along the internal crystal surface normal, ®o
is the incidence glancing angle, @ is the exit angle of
the diffracted wave, E,, E, and Ej are the amplitudes
of the x-ray waves.

Strain effect on asymmetric diffraction

The x-ray wavefield inside every kth crystalline layer
consists of four pairs of diffracted and transmitted waves

4
Dk(r) = ), D}, exp(ikoujz) exp(ikoy - 7y)

j=1

4
+ Y D}; expliko(u; + y*)zlexplitko + k) - 1y]

j=1

)]

where D¥; and Df; are the amplitudes of these waves
that are interrelated with the dynamical diffraction
equations

W%
j k _ ykpk :
Dy=""—g  Du= ViDo;  J=123.4
3

and the parameters uf are the solutions of the respective
fourth-order dispersion equation

(" - w® = x6) [ + 91 = m? = 18] = -
C))
The quantities x&, xf and x} are the Fourier components
of x-ray dielectric susceptibility in the kth layer; Yk =
h*-n/ko = 2sin 6% sin p*, g* are the angles between h*
and the surface, 6% are the Bragg angles.

As shown in [15], there are always two solutions of
(4) with Imu¥* > 0 and 2 solutions with Imuf < 0.
Inside the crystal the exponentials in (2) are damped
for the former roots and raised for the latter. The roots
with Imu* < 0 are non-physical for the infinitely thick
bottom layer (the substrate) of the structure because they
provide infinitely rising exponentials. Therefore, only
two pairs of wavefields DY, D} and D}, Dy, remain in
the substrate.

In order to find the x-ray amplitudes Es, E,
D}, ...D}Y the boundary conditions for x-ray wavefields
and their derivatives at all interfaces should be used.
These conditions can be represented in the form (see
[12] for more details):

4
Ey+E,=)_Dj

=1

4
Ey=) V/'Dj
=1
" )
yo(Eo — E) = ) _u}Dj
i=1

J

4
“nEr= 3 ujD)
j=1

at the vacuum—crystal interface, and
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(6)
at the interface between two crystalline layers. Here
M =2 for k = N —1 and M = 4 for the other layers.
The following notations are also used:

wh=Viui+yhH  ff= exp(iujkoz)

g = exp(iy*koz).

Indices (L) and (U) indicate that the respective exponent
is evaluated at the lower (upper) boundary of the layer.
Apparently, (L)r =(U)i+1.

Equations (5) and (6) can be rewritten in a
matrix form if the following matrices and vectors are
introduced:

E'=(Eo=1,En=0,Es, Epn)

7
D* = (D, Dk, Dy, D) @
(1 0 1 0
s_|0 1 1
Yo 0 —»n O
0O m 0 -—wm
(8)
(11 1 1
vk vk vk vk
k __
$'= u}l‘ u% u% u%
k k k

k
w w, w; wy

Ak — Gk(U)skFIc(U) Bk — Gk(L)ska(L) (9)

where Ff = f}8;; and GY; = ¢}8;; are diagonal square
matrices, {1 ;‘3 =1, "and ;2 = ¢k = gk, For
k=1,. 1 the size of all matrices is (4 x 4). In

the case of the substrate layer the matrix FV is (2 X 2)
and S¥ is (2 x 4) since only two roots with Imu >0
are taken into account.
Substituting (7)—(9) into (5) and (6) we obtain
S'E' = A'D!
BlDl — A2D2

Bka = Ak+1 Dk+1 (10)

BN—IDN—I — ANDN.
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This is the matrix form of boundary conditions. Carrying
out the substitution for every line in (10) up to the upper
one we arrive at

Ev = (SV)—IAI(BI)—I
x ...AN-1(BN-1)-'ANDV = §4DV (11)

where § is a (2 x 4) matrix and (11) is a set of four
linear algebraic equations with respect to four variables:
E,, E,, DY and DJ,. The solution for Ej, is

S5 53
En= SuSn = Sadu (12)
S11822 — S1282

and the reflection coefficient is calculated according to
the formula

P, = (Re /o)l En I. (13)

Obviously, equation (13) provides the solution to the
problem in principle. However, the paramet er », and

the matrix S need to be evaluated.
The equation for y, derived in [15] is

=+ ¥ -« (14)

with o = [(ko + h)? — k2]/k2 being the parameter
describing deviation of the incident wave from the exact
Bragg condition. It is easy to show that in our case, v
does not depend on k:

(ko-n +h -n + AR*)?
ko

=(w+¥)-a

=(+y) -—au=

(ko +h + Ah*n)?
k3

where ¥ and « are the mean parameters and AhF are the
deviations of #* from the mean value in different layers:
h* =h + Ah*n.

Consider now the structure of the matrix S:

é — (SV)—lsl FI(U)(FI(L))—-I (sl)—l(Gl(L))—l
x GUSFV GVUISVFVO, (15)

Equation (15) can be re-written as a product of
transmlttancy matrices T¥ introduced in [12] and ‘strain’

matrices GF4+1:

é — (SV)—ITlél,2T2é2,3 . TN—léN—l,NsNFN(U) (16)

where:

T = ska(U)(Fk(L))-l(sk)—l — skf_-k(sk)-n (17)
ék,k+l — (Gk(L))—IGk-H(U)_ (18)

Matrices (F¥);; = exp(—iutkot*) 8, are diagonal
matrices containing the phase changes of the x-ray waves
on the path from upper to lower layer interfaces. The
parameters t* = z¥®) —z*©) are the thicknesses of layers.



If the thickness of a layer tends to zero, then: F > |,
and T¥ —» S¥(S*)~! = |. Thus, the T matrix of an
infinitely thin layer tends to a diagonal unit matrix and
the effect of the layer disappears.

The matrices

(G*)i; = explikoz® ' (¢F — ¢85

_ describe the effect of change in the normal lattice
spacing from layer to layer. The parameters ¢* can
be represented in the form

y* =y (1+ Ad}/a,) (19)
and the exponents for G5! and G&*' can be written

as
koz¥ Aak*t'k fa, = h,zAafTa, (20)

The right-hand side of (20) contains the well-known term
that describes the effect of the normal lattice strain on
Bragg diffraction. In the absence of the strain (GH =1,
and the equation for S is reduced to that obtained in
[13]. B

Thus, computation of the matrix S for an arbitrary
strain gradient in crystal multilayers is straightforward.
The derived equations are general on the understanding
that they are valid for both GID and XEAD.

3. Reduction of equations in XEAD cases

The equations presented in the previous section can
be considerably simplified if either the incident or the
diffracted beam makes a large angle with respect to
the crystal surface, because in this case the specular
reflection effect is negligible for the non-grazing beam.

Theoretical analysis pertaining to XEAD in perfect
crystals was carried out in [16]. As shown in [16], the
dispersion equation (4) for XEAD becomes a third-order
one and only three wavefields are excited in every layer.
Besides, the boundary conditions for the wavefields
derivatives can be dropped for non-grazing waves.

Basically, the approximate analytical solutions of
dispersion equation (4) were obtained for XEAD with
grazing exit [17] and grazing incidence [18]. These
solutions can be used in every crystalline layer with the
matrix form of boundary conditions, as derived in the
previous section. However, when a computer is always
employed for matrix transformations, the numerical
solutions are preferable because they are more accurate.

Below are presented the results on reduction of the
general formulae for grazing incidence and grazing exit
XEAD.

Strain effect on asymmetric diffraction

3.1. Grazing incidence

The approximate dispersion equation is (see [16] for
details)

XnXh

W=y —x0) [u+ ¥+ 0+ x0"] =~ " (21)

This equation has one solution corresponding to the
wavefield damping inside the crystal and two solutions
corresponding to the rising wavefields.

The boundary conditions can be simplified since the
conditions for the derivatives of diffracted waves can be
discarded. Equally, the matrices in (7)—9) are reduced
to the form

E' = (1, E,, Eyp)

Dt = (Dl(;lv Dgzv D’(§3)

1 1 0 1 1 1
S'= (yo - 0) st = (u’l‘ ut )
0 0 1 Ve vE oV

(22)

(23)
A 10 0
Gk.k+l =(0 1 0 (24)
0 0 gk,k+1
where we have designated gt*+! = expli(y**' —

1[/")koz""‘+’].

In the substrate layer only one solution D}
corresponding to the dampened x-ray wavefield has to
be taken into account and therefore SV is reduced to a
(1 x 3) matrix. After evaluation of S according to (16)
the solution to the diffracted wave can be obtained in
the form

Ep = 831/Sn (25)

3.2. Grazing exit

In this case the dispersion equation is also of third order
(17},

" ’ Xh Xh
(W2 - —x0) [ =¥~ 08 + 0] = 3

(26)

where u = u” — . However, unlike (21), this equation
provides two solutions corresponding to damped wave
amplitudes and one corresponding to waves with rising
amplitudes.

Since the incident wave in vacuum and the
transmitted waves in the crystal make large angles with
the surface, the boundary conditions for their derivatives
can be discarded. The specularly reflected wave in
vacuum can for the same reason also be neglected.
Consequently, the matrices in (7)~(9) can be simplified
to

E'=(1,0, Ep)

(27
D = (Dlév Dgz’ Dlés)
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1 0 O 1 1 1
S"=<0 1 1 ) s"=(v{‘ V,: v;‘)
0 m —n wt wi wi

(28)

. 1 0 0
GHH = (0 gttt 0 ) (29)
0 0 ék,k+l

In the substrate layer two damped wavefields D}
and D{,”z are taken into account since (26) has two roots

with Im uf > 0. Therefore, the matrices SV and S are

of size (2 x 3). After evaluation of S the solution for
E;, can be found in the following form:

_ §3l 5‘22 — §32§21

E, = —= —. 30)
S11522 — 12821

In general, application of the outlined approximate
solutions provides more than a two-fold gain in
computation rate.

4. Simulation of XEAD measurements

The formulae derived in the previous sections provide
the computation of GID and XEAD depending on two
diffraction angles ®o and ®,, where @y is connected
through equation (14) with the incident beam position
parameter a. As the XEAD experiments are basically
non-coplanar (that is, the plane formed by the incident
and diffracted waves need not be perpendicular to the
crystal surface), evaluation of o and & presents a
special problem.

The numerical solution to this problem consists of
several steps.

4.1. Determination of the crystal surface normal

Let b be the basic surface normal (such as (100), (110),
... and so on), 8 the maximum misorientation angle of
the real surface normal n with respect to b and r be the
reference vector specifying the direction of maximum
misorientation (such as (001), (110), ...).  These
parameters are usually known from the experiment. To
determine the vector n one can represent it in the form

n=cb+cyr 31

where the coefficients ¢; and ¢, can be evaluated with
the help of the conditions n? =1 and n - b = cosé.

4.2. Determination of the incident wavevector

It is assumed that at least one of the angles ®¢ or ¢} can
be measured at the exact Bragg position of the incident
beam in the experiment. Usually, a small grazing angle
is measured. Let this angle be &, for certainty. Then,
the incident wavevector ko can be written as

ko = cikon + coh + c3th xn) 32)
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Figure 2. The effect of a 100 A strained surface layer on
symmetric Bragg reflection.

where the coefficients c¢;, c; and c3 can be determined
using the following conditions:

ko -n = kysin ®y = ko(c; + c2¥)
ko-h = —kohsinfg = ki(c1¥ + 4c, sin® 6p)

k2 =K% = c2k2 + c2h? + (b x n)? + 2010k
(33)

4.3. Simulation of measurement scans

The scans in x-ray experiments are always rotations of
the incident x-ray vector around some axis. Therefore,
it is possible to write

ko=kY +ka® (34)

where a is a unit vector satisfying the condition ko-a =
0, ® is the scanning angle measured in the experiment
and koB’ is the exact Bragg position vector evaluated
according to (32).

As shown in [19], the parameter « can be expressed
via @ and © as follows:

o =20(a - h)/ko + 207 sin* Gp. (35)

Then, the parameter y, can be found according to (14)
which can be conveniently rewritten as

W= +An)Y—a (36)

where Ay, = ©(a -n), and 2" = y§’ + ¥ is plus/minus
the value of yy at the exact Bragg position.

The formulae presented above have been included
in our computer program. Although the direction of
a is restricted only by the condition ko - @ = 0, it
is, in the experiments, usually chosen along one of the
following directions: [ko x r], [ko x k], [ko X [ko X n]]
or [ko x [ko x h]]. Examples of the computations are
given in section 5.
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Figure 3. The effect of a 100 A strained surface layer
on coplanar extremely asymmetric x-ray diffraction at 2°
grazing incidence (a) and grazing exit (b).

5. Numerical examples and discussion

The diffraction curves with different asymmetry factors
Yo/t were computed with the aim of comparing the
change in their shape due to a 100A strained layer
located on the perfect Ge crystal surface. Computations
were carried out for the (220) roeﬂection of o-polarized
x-rays of wavelength A = 1.54 A. The values of Aa,/a,
in the strained layer were assumed to be 1 x 1073 and
2 x 1073,

The computations for the symmetric (220) reflection
are presented in figure 2. It can be seen that the effects
of the strains are basically displayed far from the Bragg
peak at angles where the reflection coefficient is very
small: P, < 2 x 1075. For these values the two-
beam x-ray diffraction approximation might be invalid.
Therefore, it is doubtful whether the computed effects
provide complete correctness. Additionally, due to its
small intensity, the effect of the layer measured in the
experiment might be overwhelmed by diffuse scattering
in the crystal bulk. Thus, the results of the measured

Strain effect on asymmetric diffraction
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Figure 4. The effect of a 100 A strained surface layer

on non-coplanar extremely asymmetric x-ray diffraction at
0.25° grazing incidence and with a scan retaining the x-ray
total external reflection condition.

symmetric Bragg reflection are not supposed to reveal
the effects of lattice strain in a 100 A layer.

Figure 3(a) presents the effects of the same strains on
coplanar XEAD with 2° grazing incidence and figure 3(b)
the effects for 2° grazing exit. In order to satisfy
the coplanar diffraction condition the angle between
the plane (110) and the surface was chosen to be 22°.
Computations were carried out for the scans along [ko X
[ko x n]] which in this case was practically equivalent to
the scans along [ko X [ko X h]] and implied variation of
the incidence angle. The other scans (along the surface)
did not change the Bragg angle and therefore were of no
interest with regard to the lattice strain measurements.

It is evident in figure 3 that application of asymmetric
geometry produces at least a five-fold enhancement
of the strained layer effect, as the curves tails are
considerably modified even at P, =~ 107 A
comparison of figure 3(a) with figure 3(b) shows that the
grazing incidence and grazing exit XEAD geometries are
equivalent in terms of their sensitivity to lattice strains
in thin layers.

All the curves in figure 3 reveal sharp drop down
to zero intensity at the right hand tail. In figure 3(a)
the curves are subject to dropping because the incidence
angle becomes zero or negative. In figure 3(b) this
occurs because the exit angle of the diffracted wave
turns to an imaginary quantity according to (36). The
drops are preceded by local spikes arising from the
total external reflection threshold for one of the x-ray
wavefields.

Apparently, the maximum sensitivity of XEAD to thin
layers can be achieved in those cases in which the Bragg
scans maintain the condition of total external reflection.
These scans, parallel to the surface, are possible in non-
coplanar XEAD. In figure 4 the computations are carried
out for non-coplanar XEAD, where the angle between
(110) and the surface is 45°, the incident wave strikes
the crystal surface at 0.25° and the scans are carried out
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along [ko x n], that is, the small incidence angle is kept
constant. It can be seen that the strained layer effect is
displayed at values of P, ~ 2 x 1073 which is 20 times
greater than in the above example. Besides, the effect of
strain is already observable at about the 20% level of the
Bragg peak, since the maximum value of the reflection
coefficient is low. Thus, the sensitivity to strains in thin
layers is greatly enhanced.

In conclusion, a theory and an algorithm were
developed for computation of XEAD in strained surface
multilayers. These techniques can be helpful in planning
XEAD experiments and processing XEAD data measured
from various thin strained multilayers.

In addition, we would like to note that the effects
of surface and interface roughness as well as transition
layers in multilayers can be simply added to the proposed
model by analogy with what was derived in [20] in
neglecting lattice strain.
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