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Abstract. A method for computation of X-ray grazing-in-
cidence diffraction (GID) in multilayers and superlattices
is presented. The method is based on X-ray dynamical
diffraction theory and a matrix from a boundary equa-
tions and provides a simple numerical solution of the
problem. The application of the method to simulating
GID measurements taken from AlAs/GaAs superlattice
(20 periods of 14.6 nm AlAs and 6.8 nm GaAs) demon-
strates the principal validity of the theory. A perfect
matching between the theory and the experiment re-
quires the real-structure effects of sample to be taken into
account.

PACS: 61.10; 68.65

1. Introduction

In recent years, the X-ray grazing-incidence diffraction
method (GID) has been effectively applied to the studies
of semiconductor multilayers [1]-[9]. However, until now,
it has been possible to give a theoretical interpretation
only to certain particular cases of these measurements.
For example, a theoretical analysis of GID in a structure
composed by a series of amorphous layers grown on crys-
tal surface was carried out [1]. A theory of the case of
extremely asymmetric GID was developed [2]. The GID
in strongly periodic superlattices was analyzed [5]. A kine-
matical approach to GID in multilayers was proposed
[4,10]; however, it was not applicable to a high-quality
multilayers because of known assumptions contained in
the kinetmatical theory. An extension of Takagi-Taupin
equations was derived in [11], but the numerical solution
of these equations contained matrix exponentials and
therefore the computations were very much time consum-
ing. Besides, the solution of these differential equations
might turn out to be unstable for the sharp interfaces in
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multilayers. Finally, a set of linear algebraic equations of
dynamical diffraction in an arbitrary sequence of multi-
layers was derived and suggested to be solved numerically
by Gaussian method [3]. Unfortunately, this approach
could not work for N, .= 5 due to rounding errors in
the simultaneous numerical solution of the (4 X Ny, ¢ )-
set of equations. Therefore, a quantitative analysis of
experimental GID data taken from multilayers has not
been possible until now.

Recently, a new way to solve the dynamical diffraction
equations derived in [3] was independently found in [12]
and [13]. It was shown that the set of (4 X N,,.,,) can be
decomposed onto (4 x 4) matrix blocks and then the nu-
merical solution of the problem can be reduced to rela-
tively simple operations with (4 < 4) matrices.

In [12] the (4x4) matrix approach was successfully
applied to analyzing GID in ion-implanted silicon crystal.
The depth profile of the implanted surface layer was sub-
divided into few sublayers and the scattering amplitudes
in these sublayers were fitted to match the experimental
data. Due to the small thickness of the analyzed layer,
the validity of applying matrix method to thick layers
was not analyzed.

In [13] the (4x4) matrix method was developed in
order to analyze GID from synthetic multilayers and su-
perlattices. Therefore, some more general case of arbi-
trary sequence of amorphous and crystalline layers with
different density was considered. Besides, it was shown
that the (4 X 4) matrix algorithm might diverge, when it
is applied to computing GID from many layers. However,
the divergence problem was overcome with the help of
dynamical thick crystal approximation. With this ap-
proximation, the (4 4) matrix approach was shown to
be applicable to 10> — 10° or even more layers.

In present paper we give a new more accurate deri-
vation of (4 x 4) matrix method [13] and apply it for the
first time to analysis of experimental GID data taken
from synthetic superlattices. In Sect. 2, the (4x4) ma-
trix algorithm is derived. In Sect. 3, the dynamical thick
crystal approximation is discussed. In Sect. 4, some de-
tails of GID measurements taken at HASYLAB from
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AlAs/GaAs superlattices are given. In Sect. 5, the matrix
algorithm is applied to computer simulation of these
measurements and the obtained results are discussed.

2. Matrix method

Let us consider X-ray GID in a multilayered structure
composed of an arbitrary sequence of amorphous and
matched crystalline layers'. Within the dynamical dif-
fraction formalism the X-ray wave fields in vacuum be-
yond the structure and in every layer may be written for
every X-ray polarization in the following form (see [3]
for more details):

E, (1) ={Eyexp (ix®,2)
+ E exp(—ix®yz)}exp(ix,r,)
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- in amorphous layers.

Here E, is the amplitude of incident wave, equal to one.
E, and E, are that of the reflected and diffracted waves,
respectively (see schematic layout in Fig. 1). Index
k=1,...N denotes the index of a layer in the sequence
of surface layers; x is the wave vector of the incident X-
ray (x=|x|); h is the reciprocal lattice vector in Bragg
position to x; @, is the incidence angle and @, is the exit
angle of the diffracted X-ray wave with respect to the
crystal surface. Parameters uf are the solutions of the 4th
order dispersion equation of dynamical diffraction in a
k-th crystalline layer (j =1,...4):

W — B —x ) (W +w)* — B —x§)=xK XK 4)

Parameters x&,x%,x% are the Fourier components
of X-ray dielectric susceptibility for a k-th layer;
w=2dsin(0), & is the angular misorientation of h

! Please note, that the mismatched layers with |4d/d| > 10~* can
be treated as amorphous because they do not satisfy the Bragg
diffraction condition simultaneously with the other layers
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Fig. 1. Schematic view of X-ray grazing-incidence diffraction in
multilayers. E,, E, are amplitudes of the incident, Bragg reflected
and specularly reflected beams. D{™...D{"’ are the wavefield am-
plitudes in the n-th layer. &, and @, are the angles of incidence
and exit, 8, is the Bragg angle. PSD denotes the position sensitive
detector used in the experiment

with respect to the surface; V= (u%"— @& — x§)/ x5 are
the ratio of the diffracted-to-transmitted amplitudes for

the j-th solution of (4); ufq,= )/ D5+xb, usn=
4/ D7+ x& —w. Four wavefields are excited in each
layer. As shown in [14], Eq. (4) always has two solutions
describing the amplitudes which are damped inside the
structure and two which are raised (conforming to
Imu; >0 and Imu; <0, respectively). The latter pair is
usually treated as the reflection from the lower boundary
of the layer. Therefore, this pair of waves should be dis-
carded for the last layer (the substrate).

Thus, in the case of a N-layered structure we have 4 N
unknown wave amplitudes: 2 amplitudes in vacuum
(E,, E,) and 4 (N — 1) + 2 in multilayers. In order to find
these amplitudes a set of 4 N boundary conditions has to
be applied for X-ray wavefields and their derivatives at
N interfaces [3]. In particular, at the vacuum-crystalline
layer interface the conditions are:

4
Ey+E,= > D!

,j:]
4
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4
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j=1
At crystalline-crystalline, crystalline-amorphous and
amorphous-amorphous interfaces the conditions have the
form:
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_ and so on. Here the following notations are used:

wh=VFEuity), fF=exp(iufxz).
Indices (L) and (U) indicate that exponent is evaluated
at the lower (upper) boundary of layer.

Rhan and Pietsch attempted to solve this set of 4 N
equations by Gaussian method [3]. However, a more ap-
propriate way is to rewrite the boundary equations at
each interface in a matrix form [12, 13]. For this aim, we
introduce 4-component vectors D¥, layers scattering ma-
trices S* and matrices 4 and B* for the right and left
sides of the boundary conditions:

Dy D;
k
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cr D:[; 4 am D(]Jcs
Dj Dy,

e v v

Sk =
or
k k k

k
wy Wy Wiz qa

(10)
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1 0 1 0
0 1 0 1

am ok 0 uk, 0
0 u+w 0 ui+w
Ak:Sk Fk(U) BkZSka(L) (11)

where FX= f*¢,,. For the substrate layer, only the first
2 components of D* and the first 2 rows of S k remain
and the size of F* is (2% 2).

For the fields beyond the surface a 4-component
“yacuum” vector E'=(E,, E,,,E,,E,) is introduced,
where E,=1 and E,,=0 are the ampltides of incident
wave incoming from O-th and A-th wave directions.
Vacuum scattering matrices S, F** and B® are assumed
in analogous form to that for amorphous layers taking
into account the condition x§=x,=0.

With the help of our designations, the boundary con-
ditions are rewritten as follows:

BUEU=A]D1
BIDI_:AZDZ
......... (12)

where DV = D* and A" = A° are 2-component vector and
(2x 4) matrix of the substrate.

So, we see that the overall set of equations is quasi-
diagonal:

B —A' 0 0 0 0 0
0 B' —A> 0 0 0 0
0 0 B> —A*.. O 0 0
o 0 0 B 0 0 0
0 0 0 0 ..—AN2 0 0
0o 0 0 0 BN-2 4Nl
0O 0 0 0 0  BNTU —4V

E® 0

D! 0

D2 0

3
<[ P -1 ° | (13)

pN-2 0

DN 0

DV 0

Therefore, the solution of (12) can be greatly simplified.
If we begin to solve (12) starting at the last line, we arrive
at:

Ev:(Bv)AlAI(B])—IU.AN—I(BNfl)—lANDs
(14)
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or
E*=(B") " (T'...T ") 4" D~.

We shall refer the products 7%= 4% (B*) ™! as the transfer
or T-matrices of the layers. From (11) it follows that:

Tk:Ska(U)(Fk(L))—l(Sk)flzskFtk(Sk)fl. (15)

Here (FF),; =exp (—iuf xt*)é,;, t* =2z — 2V is the
thickness of k-th layer. If the thickness of layer tends to
zero, then:

Fks], TkoSK(SH '=1

- i.e. T-matrix of an infinitely thin layer tends to a di-
agonal unit matrix.

Equation (14) has a clear physical sense. If all *=0,
Eq. (14) coincides with the case of the GID of a perfect
crystal. If there are layers on the crystal surface, the sub-
strate matrix is modified by a product of 7-matrices of
all of these layers:

Ss=T'.. TN 1§ FsV) (16)

Note that Eq. (16) is automatically reduced to that
for the perfect crystal if all the layers have the same struc-
ture. In this case:

SNSISS FIIHFN*I Ss *]S,rFs(U):Ss.
(F ..F/)(S”) (17

(Fr@)~ I
In general case Eq. (14) with account of (16) provides a
set of 4 equations with respect to 4 unknown amplitudes:
E,, E,, Dy, and D;3:
E’=(B’)"'S*D*=XD* (18)
or:
XuDi+X,,D;=1
X, D]+ X,,D3=0

(18a)
Xy Di+ X D3=E,
Xy Di+Xp,D3=E,.
The solution of (18) is straightforward:
E :X31X22'—X32X21
’ X11X22_X12X21 ’
(19)

:X41 Xy =X Xy
g X Xoy — Xip X

We see the advantage of the proposed approach is the
absence of any operations with matrices greater than
(4 x 4). Therefore, the toal solution is expected to be re-
liable in numerical implementation.

To realize the algorithm numerically, one has to:

- compute S¥,
— find their inverses by any conventional method of nu-
meric algebra,

- compute T* and their product,
- evaluate X, and E, E, according to (18) and (19).

The reflection coefficients are found according to the
formulae: 2

P,=|E,|* (20)

Ph=(¢h/¢0)|Eh|2' (21

3. Dynamical thick crystal approximation

The matrix solution obtained in previous section is for-
mally applicable to multilayers with arbitrary thickness.
However, the overflow in computer program occurs at
small @,, &, < &, when the total thickness of multilayers
exceeds ~10%nm (@, is the critical angle of X-ray total
external reflection).

This overflow problem is obviously similar to that of
calculating the Bragg-case X-ray diffraction from thick
crystal plate (¢ 1 cm). The exponents in some solutions
of the dynamical diffraction become so great at the lower
surface of the plate that the precision in computations is
lost or numerical overflow takes place. These solutions
with great exponents are treated as the waves reflected
from the lower surface of the plate since their exponents
are decreased when z-coordinate is decreased. Obviously,
the amplitudes of these waves are very small and can be
put zero in thick crystal. Then, as soon as these solutions
are discarded, the boundary conditions at the lower sur-
face can be discarded as well and the effects of lower
crystal boundary and the layers below it are neglected.
This procedure is known in X-ray optics as the thick
crystal approximation.

Let us now turn back to GID in multilayers. At small
®,, &, < @, the X-ray wavefield is quickly dampened
inside the crystal. That means that several upper layers
only contribute to the reflected GID intensity. The re-
flected waves at lower boundary of some k-th layer are
already so weak (the exponents are so great) that the
effect of this boundary and all the layers below it can be
neglected. That is the analog of thick crystal approxi-
mation. Since the penetration of X-rays in GID strongly
depend on @,, ®,, the number of layers taken into ac-
count will vary dynamicall from point to point on the
diffraction curve. That is why this case can be called the
dynamical thick crystal approximation [13].

The dynamical thick crystal approximation can be im-
plemented numerically as follows. One can evaluate the
maximum matrix element in the right side of (16) after
multiplying it by every T* starting at k =1. As well seen
from the example (17), the order of this product at a k-th
interface is ~max |(F¥)™'| ~max|exp (—iufxz")|,
i.e. just the order of phase exponents is followed. As soon
as the product reaches great values (say 10'°-10"), the
X-ray waves reflected from the respective interface and

2 In the case where the measurements of P, are carried out de-
pending on @, the right side of (21) must be multiplied by 2 &, (see
[15] for details)
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Fig. 2. Experimental (thick lines)
and computed (thin lines) GID
curves taken at several incidence
angles from GaAs/AlAs
superlattice



346

the waves reflected from all the deeper interfaces can be
neglegted. In other words, the layer above this interface
can be considered as an infinitely thick substrate and one
can take into account in this layer the solutions with
Imu; > 0 only.

4. Experimental

In the following we compare the formalism given
above with the experimental results measured from an
AlAs/GaAs superlattice (SL).

Twenty periods of thin GaAs and AlAs layers were
grown on GaAs [001] substrate using molecular beam
epitaxy. The thickness of the layers in SL was 14.6 nm
AlAs and 6.8nm GaAs as obtained by independent
X-ray reflectivity measurements.

The GID experiment was performed at the D4 beam
line at HASYLAB using A =0.154 nm. We measured the
GID intensity distributions of the (220) reflection in de-
pendence on @, at different fixed @,. The angular reso-
lutions, with respect to the incident and diffracted beams,
were A®P,=0.01° and 4P, = 0.007°. The diffracted plane
(220) was determined experimentally to be slightly mis-
oriented with respect to the surface normal by
6 = —0.03°. The other details of the experiment are de-
scribed elsewhere [7].

Some experimental scans recorded at different @,
are shown by thick solid lines in Fig. 2. All the curves
demonstrate well pronounced SL peaks, which document
a good periodicity of this structure. Further, some ad-
ditional effects are observed such as split peaks and shoul-
ders near the SL peaks.

We should note that we failed to explain these addi-
tional effects using the kinematical theory of GID pro-
posed in [4].

5. Application of the theory

The calculated curves are shown in Fig. 2 by thin solid
lines. These curves were computed assuming a perfect SL
structure. Besides, experimental beam spreads were also
not taken into account due to the high experimental reso-
lutions AP, and 4D,

One can see that the computations explain principally
all the experimental findings such as peak positions, split-
ting of the peaks, shoulders etc. The first strong maximum
shown at the small angle side of Fig. 2 corresponds to
so-called surface (Yoneda) peak. The main peaks at large
&, are SL peaks caused by the periodicity of SL. These
peaks are separated by AP, x4/t , where tg; =21.4 nm
is the SL period. The peaks between these regular maxima
present the most interest. These peaks observed at both
experimental and theoretical curves are due to the mul-
tiple reflection of X-ray waves between intrinsic inter-
faces. These peaks can be explained solely by the dynam-
ical treatment of the diffraction problem. The presence
of these peaks on the experimental curves proves the high
quality of SL resulted in the dynamical diffraction. Thus,
taking into account that the theory assumes a perfect

structure of SL, we can conclude that theory and exper-
iment are in good agreement.

The difference between the experimental and theo-
retical curves in Fig. 2 is obviously due to various real-
structure effects not included in the model used.

For example, the calculated higher-order SL peaks are
more intensive than the measured ones. We have checked
that this may be caused by interface roughness effect. The
account for interface roughness in matrix method and its
application to analysis of experimental data will be re-
ported in the next papers [16,17].

Besides, the slop of the intensity drop in the experi-
mental curves at high &, is considerably greater than that
in the calculated curves (see especially the curves at
@,=0.3°, 0.35° and 0.425°). The high slop of the mea-
sured curves can be attributed to the limited in-plane
divergence of the incident beam at D4 beamline. Fur-
thermore, as known from the reflectivity measurements
[18], the surface roughness of the sample can also have
a similar effect.

Thus, we have elaborated the dynamical diffraction
approach for processing GID measurements taken from
various surface multilayer structures including superlat-
tices. The new approach provides explanation to some
additional SL peaks and other multi-beam effects which
cannot be treated with the kinematical diffraction theory.
The account of real-structure effects requires some im-
provements to our computer program which are possible
within the proposed theory. Besides, the further devel-
opment should include the diffraction in strained and
mismatched multilayers. The construction of the respec-
tive theory is the subject of our current investigation.
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contract number 055IPAAIS. The authors are also grateful to D.
Martin, EPS Lousanne, Switzerland for the preparation of the sam-
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