
This is a status report on the X-ray Server that has been operational at 
the APS since 1997 and performed more than 80,000 numerical x-ray 
experiments. X-ray Server is a non-commercial project with the goal to 
explore novel technologies for establishing scientific collaborations, 
sharing personal research results, and refining scientific software. The 
server provides Web-based access to a number of programs 
developed by the Author for simulating x-ray diffraction and scattering. 
Unlike similar XOP project by ESRF/APS the software is not shared, 
but operates directly on the Server. This philosophy brings numerous 
benefits to both the developer and the users. Currently seven programs 
are operational. They provide the calculations of: 

1.The Bragg curves from strained crystals and multilayers, 
2.The specular reflectivity curves from multilayers with interface

roughness, 
3.The diffuse scattering patterns from correlated interface roughness in 

multilayers, 
4.The resonant x-ray specular reflection from magnetic multilayers, 
5.The multiple Bragg diffraction of x-rays in arbitrary diffraction 

geometries,
6.The dispersion corrections and scattering factors for various materials 

in the x-rays range, 
7.The orientations of the Bragg planes in crystals satisfying given 

conditions. 

The programs (4) and (5) were added in the last year and more
additions are on the way.
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X-Ray Server Technology
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Example BRL results

Reflex ( 0 0 0 )

Reflex ( 1 1 1 )

Reflex ( 2 2 0 )

BRL calculates multiple Bragg diffraction of x-rays from crystals. It is based on Ref. [8]. The Web 
interface provides the possibility to simulate up to 12-wave dynamical Bragg diffraction of x-rays 
from a plate-shaped crystal including the cases of x-ray waves grazing along the surface and Bragg 
angles close to 90o. 
Typically the calculations of multiple Bragg diffraction are reduced to the eigenvalue problem for a 
scattering matrix. If there are no grazing waves involved into the diffraction geometry so that the 
specular reflection effects could be neglected, then the size of the scattering matrix is 2N*2N for N-
wave diffraction. Here the factor of two appears due to the two polarizations (sigma and pi) of x-
rays. However, if the diffraction geometry involves an x-ray wave grazing along the crystal surface, 
the task becomes more complicated. For this case R.Colella [Acta Cryst. (1974)] suggested a theory 
where the calculations of multiple Bragg diffraction are reduced to the eigenvalue problem for 
4N*4N scattering matrix. This holds even if only one of e.q. 12 waves is grazing. BRL uses a more 
effective algorithm and reduces the task to a generalized eigenvalue problem for 2(N+Ns)*2(N+Ns) 
scattering matrix where Ns is the number of grazing 
waves. In some cases like only one of 12 waves is 
grazing the calculations are reduced dramatically. 
BRL has been successfully used to simulate the 
applications of Bragg- and Laue-case Renninger effect 
[9] to x-ray double-plane collimation and the multiple 
diffraction effect in x-ray surface back diffraction [10].



MAG_sl simulates resonant x-ray specular 
reflection from magnetic multilayers with 
the account for interface roughness or 
transition layers. It is based on the recent 
paper by S. Stepanov and S. Sinha,  PRB 
61(2000) 15302.
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Example GID_sl results

1. Normal lattice strains, da(z)/a; 
2. Variations of crystal polarizabilities x0(z), xh(z) including   

the Debye-Waller profiles wh(z),  w0(z); 
3. The rms height sigma(z) of interface roughness in 

multilayer.

GID_sl (Grazing Incidence Diffraction from Superlattices) was originally developed in [2,4,5] for 
simulation of GID (Fig.1a) from semiconductor multilayers. In  [4] this program was extended to 
extremely asymmetric diffraction (Fig.1b) and non  coplanar asymmetric diffraction (Fig.1c). 
Finally, in [10] the symmetric Bragg case was also included and the algorithm was made 
applicable to arbitrary number of layers.
At present the program can simulate the following profiles of structure parameters  in multilayers: 

The uniqueness of GID_sl is that it is the only software 
capable of simulating Bragg diffraction from multilayer in 
the conditions of total external reflection of x-rays where 
the x-ray penetration into target reduces to 10nm providing 
the possibility to study very thin layers. In addition, with 
GID_sl one can simulate x-ray scans around arbitrary axes. 
For example, one can design such scans in asymmetric 
diffraction geometries (Fig.1c) which preserve the small 
incidence angle.

The program behaves well in usual x-ray diffraction 
schemes too. As shown in the comparison study by 
Grundmann & Krost [Phys. Stat. Sol. (b), 218 (2000) 417-
423] it turns to be more reliable than some popular 
commercial software for diffraction curves simuation.
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TRDS_sl (Total Reflection Diffuse Scattering from Superlatices) was developed in [6--9] for the 
simulations of x-ray diffuse scattering from interface roughness in semiconductor multilayers 
(Fig.1). This program implement a number of different models for interface roughness and for 
correlations between roughness at different interfaces in multilayers (Fig.2)..Some of these model 
are suggested in [6--9] and some are due to other authors. Notable is the implementation of 
model [6] which allows to study the wavelength-dependent inheritance of roughness in layer-by-
layer grown multilayers (Fig.3).
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Another notable feature of TRDS_sl is the implementation of models [6] for x-ray scattering from 
atomic steps on vicinal interfaces and inclined roughness transfer in crystalline multilayers 
(Fig,4). Both of those effects provide asymmetry of x-ray diffuse scattering (Fig.5), but each of 
different kind.



TRDS_sl inut form Example TRDS_sl results

(           Get a freeware UNZIP utility) 

Download ZIPped results: 

Display INP file: 
Display TBL file: 
Display DAT file: 

TRDS1942.zip
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Example TER_sl results

TER_sl (Total External Reflection from Superlattices) was designed as a by-product in the 
course of developing GID_sl. It uses the same recursive matrix calculation algorithm as GID_sl
and very similar data input. The TER_sl can account for material density profile in multilayers, 
the interface roughness, or transition layers.
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X0h calculates material susceptibilities χ0 and χh for x-ray wavelength range. It was originally 
developed in [1] for the needs of parametric x-ray radiation studies. Later on it occurred to be a 
great tool for synchrotron radiation applications. The calculation consists of 5 steps:

1. Calculation of scattering factors f(s).
2. Calculation of dispersion corrections df' and df".
3. Calculation of dipole and quadruple absorption cross sections.
4. Calculation of Debye-Waller temperature factors.
5. Calculation of χ0 and χh by summation of atomic scattering over crystal unit cell.

No quantum calculations of atomic wave function are used; basically the algorithm interpolates 
the data tabulated in the International Tables for X-ray crystallography. There is however the 
difficulty with Step-2 how to interpolate the dispersion corrections df' and df“ because the 
International Tables contain df' and df" for characteristic X-ray lines only (Cr-Ka1, Fe-Ka1, Cu-
Ka1, Mo-Ka1, and Ag-Ka1) and any other tables provide the discrete data sets of df' and df" too. 
X0h implements the interpolation scheme suggested in [1]. The dispersion corrections can be 
calculated with the formulae given by Don Cromer [Acta Crystallogr. vol.18 (1965) p.17-23]:

Here the summation is taken over the absorption edges, NS is the number of absorption edges 
taken into account, Nk are known constants for different electron shells, P(Xk, Nk) is the known 
integral evaluated by Parratt, Xk = λ/λk is the ratio of the x-ray wavelength to that of the 
absorption edge, and gk are oscillator strengths at the absorption edges. First, X0h applies the 
above equations to known tabulated dispersion corrections and evaluates gk. Then, it uses 
calculated gk to find the dispersion corrections of interest.

The above process may work equally well both with the dispersion corrections tabulated in the 
International tables and with any other source. We found very useful the tables composed by 
Henke, Gullikson & Davis [Atomic Data and Nuclear Data Tables, vol.54 (1993) p.181-342]
and by Brennan & Cowan [Rev. Sci. Instrum., vol.63 (1992) p.850]. Both of them extend the 
International Tables data to a much wider wavelength range. 

Once the χ0 and χh are found, X0h can fulfill a lot of useful service tasks like evaluating the 
HWFM of Bragg peaks, searching for Bragg reflections that satisfy certain conditions, etc.
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X0h+ Search Results



Planned Expansions of X-Ray Server
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